
INTRODUCTION TO R:
HOW TO PLAY WITH STATISTICAL OBJECTS

Elizabeth Page-Gould

1

WORKSHOP OVERVIEW

➤ Goal

➤ Use R to analyze your data

➤ Roadmap

1.Getting started with R

2.Specific statistical analyses
in R

3.Some fancy stuff in R

2

OUTLINE

➤ R user interface

➤ R concepts

➤ Basic descriptive and
inferential statistics

➤ Graphing

➤ Trouble shooting

➤ R wizardry

3

GRAND
OVERVIEW

OF R

4

WHAT IS R?

➤ R is:

➤ A computer program that
can do statistics

➤ Open-source

➤ It’s free!!

➤ Widely used

➤ Most cutting-edge

➤ Syntax-based

➤ Object-oriented

5

WHAT IS “OBJECT ORIENTATION?”

➤ A programming approach where concepts are represented as “objects”

➤ An object is a thing that has:

➤ Attributes

➤ Features of the object that describe it

➤ Functions

➤ Actions that can be done with the object

➤ Objects are created in R with the “assignment arrow”: <-

6

EXAMPLE: OBJECT ORIENTATION IN R

➤ Store variables in objects
➤ group.1 <- c(4, 6, 8, 7)

➤ group.2 <- c(2, 1, 3, 2)

➤ Store analyses in objects
➤ analysis <- t.test(group.1, group.2)

➤ Extract attributes from the object
➤ analysis$statistic

➤ Use the object(s) in a function
➤ boxplot(group.1, group.2)

7

OBJECT-ORIENTED STATISTICS

➤ Why do people love R so much?

➤ Once you start thinking about statistics in an object-oriented way
… it’s a whole new world

➤ Object orientation applied to statistics

➤ Both data and statistical analyses are things that you want
to know stuff about (i.e., attributes) and want to do stuff to
(i.e., functions)

➤ Example: What if I did a t-test and put it in an object?

➤ An attribute: its degrees of freedom

➤ A function: print a nice summary of results

8

HISTORY OF R

➤ In the beginning, there was S

➤ John Chambers (Bell Labs)

➤ S evolved to S-PLUS

➤ Then, there was R

➤ Reverse-engineered, open-source version of S

➤ Developed by Ross Ihaka and Robert Gentleman
(University of Aukland, New Zealand)

➤ Ihaka & Gentleman (1996), Journal of Computational and
Graphical Statistics

9

Usage Statistics
Source: http://r4stats.com/articles/popularity/

10

USING R

11

INSTALLING R

➤ Find the link for your operating system under “Download and
Install R”

➤ http://cran.utstat.utoronto.ca/

12

WHAT YOUR COMPUTER KNOWS ABOUT R

➤ R is an installed software program

➤ Computer may not know which files to associate with R

➤ Relevant file extensions to R:

➤ *.R: R scripts

➤ *.Rhistory: A history of the commands you have run recently

➤ *.Rdata: A workspace file that holds a bunch of saved objects

➤ .Rprofile: A file in your working directory that is automatically
run when you start your R session (if you start up in a certain
way)

13

WHAT R KNOWS ABOUT YOUR COMPUTER

1.R knows how to ask your computer’s processor to compute things

2.R knows how to read and write files to your hard drive

➤ Importing files:

➤ R can retrieve files by name, if they are in a specific folder
called your “working directory”

➤ The working directory has an address called a “path”

➤ You must tell R the path to your working directory
➤ Writing files:

➤ R can export data or your workspace to the working directory,
but you must do this manually

➤ Otherwise, nothing you do within an R session is saved

14

EXAMPLE: SET YOUR WORKING DIRECTORY IN R

1. On your computer, find the path of your working directory

➤ Windows:

➤ Press the SHIFT key while right-clicking on the folder

➤ Select “Copy As Path”

➤ Mac:

➤ Right-click on folder that has your R files

➤ Press the OPTION key

➤ Select “Copy [folder] as Pathname”

2. Go back to R

➤ At the command prompt, use the “setwd” command:
➤ setwd(“path“)

15

EXAMPLE: WRITING FILES AND WORKSPACES

➤ Write a simple file to your workspace:
➤ write("This is some output", "Output
File.txt")

➤ Save whole workspace:
➤ save.image("Most Recent Workspace.RData")

16

R AND YOUR COMPUTER DON’T TALK REGULARLY

➤ You are the mediator

➤ Negative Impact:

➤ If you don’t save your syntax as you go, you may not be able to get
it back

➤ Solution:

➤ Write your commands in an *.R script and save that

➤ Positive Impact:

➤ You won’t mess up your raw data

➤ Always start analyses with your raw data

➤ Do not edit data before reading it into R
➤ Clean data and build scales/metrics in R

17

RSTUDIO

➤ RStudio is a “development
environment” for R

➤ It provides a nice user
interface

➤ When you open RStudio,
it automatically runs R in
the background

18

R AND RSTUDIO

➤ I strongly recommend RStudio

➤ R is the statistical package that actually does the stats

➤ R must be installed to run RStudio

➤ RStudio is just a friendly layer that sits on top of R

➤ Remember: R and RStudio are two different programs!

➤ You have to update and maintain them separately

19

INSTALLING RSTUDIO

➤ Find the link for your operating system under “Installers for
Supported Platforms”

➤ http://www.rstudio.com/products/rstudio/download/

➤ When you want to use R, open RStudio instead!

20

RSTUDIO WORKSPACE

21

A TYPICAL R SESSION

➤ Open R Studio

➤ Set the working directory to the folder with your data files

➤ Load the R packages that you want to use

➤ Read in your data

➤ Do stats

➤ (Maybe) Save what you did

22

WORKING DIRECTORY: SETWD() AND GETWD()

➤ Working Directory

➤ A directory or folder where R will look for files

➤ Functions for dealing with the working directory:

➤ What is my working directory?
➤ getwd()

➤ How do I change my working directory?
➤ setwd(“PathOfWorkingDirectory”)

23

PACKAGES

➤ R packages contain functions that you can use

➤ R is prepackaged with the following packages:

➤ Base

➤ Stats

➤ Graphics

➤ These packages will do most of the stuff you want!

➤ Add-on packages

➤ Do everything else that you want!

24

ADD-ON PACKAGES

➤ Add new functions to your R session that are not normally distributed
with R

➤ You must INSTALL a package once per R Version
➤ install.packages(“package.name”)

➤ The package name is case sensitive

➤ Package name must be in quotes inside the function

➤ You must LOAD the package every time you start a new R
session
➤ library(package.name)

25

EXAMPLE: LOAD A PACKAGE

➤ “readxl” package

➤ Allows you to read excel files into R
➤ Functions include:

➤ read_excel(…): Reads *.xls and *.xlsx files

➤ excel_sheets(…): Prints a list of the sheet names in an excel
file

➤ Install it!
➤ install.packages(“readxl”)

➤ Load it!
➤ library(readxl)

26

CONSOLE

➤ The console is how you talk to R

➤ Type commands after the command prompt (“>”)

➤ Hit the “Enter” or “Return” key to send a command to the
R interpreter

➤ R displays the result of your command

➤ Each line of syntax is interpreted one at a time

27

MATHEMATICAL OPERATORS

➤ You can type mathematical operators directly into the console

Operator Description Example

+ Addition > 5 + 2
[1] 7

- Subtraction > 5 - 2
[1] 3

* Multiplication > 5 * 2
[1] 10

/ Division > 5 / 2
[1] 2.5

^ or ** Exponent > 5^2 > 5**2
[1] 25 [1] 25

%% Modulus (remainder) > 5%%2
[1] 1

28

ASSIGNMENT ARROW

➤ To save the output of a command as an object, use the assignment
arrow, “<-”

➤ result <- 2 + 3

➤ print(result)

29

FUNCTIONS

➤ Functions are the commands that you type at a command prompt in the
Console

➤ General form:
➤ function.name()

➤ Functions always:

➤ Perform an action

➤ Return an object

➤ Functions usually have “arguments”

➤ Objects and settings for the function

30

FUNCTION ARGUMENTS

➤ Information you give to a function so it will do what you want it to do

➤ General Form:
➤ function.name( 
first.argument.name=first.argument.value,
second.argument.name=second.argument.value  
)

➤ Some functions take no arguments (e.g., setwd())

➤ Most functions take at least one argument

➤ Arguments are passed to a function inside the parentheses that
follow the function call

➤ Most function arguments have default values, so you don’t have to
specify an argument unless you don’t want its default

31

EXAMPLE: T-TEST FUNCTION

➤ “t.test()” function

➤ At a minimum, it must take a data object
➤ t.test(group.1)

➤ Can have other arguments, too
➤ t.test(group.1, mu=5)

➤ t.test(group.1, mu=5, alternative
="greater")

32

R’S DEFAULT FUNCTION

➤ The R console uses the default function of “print()”

➤ If you only type an object with no function call, R will assume
you want to print the object

➤ e.g., these two statements are equivalent:

1.print(object)

2.object

33

HOW DO I KNOW WHAT ARGUMENTS A FUNCTION TAKES?

➤ Help files are your best friends!!

➤ Help files are mini-manuals for R that are specific to each function

➤ In RStudio, they appear in the bottom right-hand panel

➤ For every function, you can access the help files with one of
these commands:

1.?function.name

➤ (Note there are no parentheses after the function name)

2.help(function.name)

34

HELP FILES

➤ Common Structure
➤ function.name{its.package}

➤ Description: Brief, broad description of what the function does

➤ Usage: Syntax reference

➤ Arguments: Explains the purpose of each argument and the
meanings of its possible values

➤ Details: Provides detailed usage notes

➤ Value: Describes the object that the function returns

➤ Embracing help files is your only option

35

UNDERSTANDING USAGE SYNTAX

➤ Usage syntax shows you the generic form for your command and all the
possible options you can use

➤ function.name( 
first.argument.name=first.argument.value,
second.argument.name=second.argument.value)

➤ If an argument is named without a value, then you must
supply it

➤ If an argument is named with a value, then the value is a
default

➤ There may be example syntax for more than one function

36

EXAMPLE: READ_EXCEL FUNCTION

1.Open the help file for the read_excel() function

2.Think about the syntax you would need to read in an excel file
with the following constraints:

➤ The name of the excel file is “Friendship_Data.xlsx”

➤ The data is in the first sheet

➤ The header row (variable names) are in Row 2, and the
data follows after that row

3.Read in the excel data and save it in an object called
“friendship.data”

37

SOURCE FILES

➤ A text file that has R syntax in it

➤ Always ends in *.R

➤ Best practices:

➤ Type your commands into the source file (because it will be
permanent)

➤ Send commands to the console directly from the source file

➤ Run the entire line on which your cursor is placed by:

➤ Windows: Pressing the “Ctrl” and “Enter” keys

➤ Mac: Pressing the “⌘” and “return” keys

➤ Highlight a command in the source file and click the “Run”
button

38

WORKSPACE

➤ The (virtual) environment in which your objects are stored, your packages are
loaded, and your functions are accessible

➤ In RStudio, you can view the objects in your workspace in the upper
right-hand panel

➤ What’s in your workspace?
➤ ls()

➤ You can save your current workspace and reload it:

➤ Save the current workspace:
➤ save(list=ls(all=T), file=“Saved_Workspace.Rdata")

➤ Load a saved workspace:

➤ load(“Saved_Workspace.Rdata”)

39

GLOBAL NAMESPACE

➤ Your workspace is also your default, global namespace

➤ “namespace”

➤ A dictionary for R that maps names onto objects and functions

➤ Objects in the global namespace can be directly referenced on
the console line

➤ Some objects and functions are not in your global namespace

➤ Some objects are stored in other objects

➤ If an object is not in the global workspace, then you need to
tell R where to find it

40

NAMESPACE ERRORS

➤ Issues pertaining to the global namespace are common
problems with R

➤ If you request an object from the wrong namespace, you
will get an error like:
➤ Error in [function(x)] : object '[x]' not
found

➤ If you create a new object with the same name as another
object, the second object will overwrite the first one

41

HOW TO USE ANOTHER NAMESPACE

➤ Reference the namespace before the object name, separated
by a dollar sign
➤ namespace$object

➤ Use the with() function
➤ with(namespace, object)

➤ with(namespace, function(object))

42

NAMESPACE BEST PRACTICES FOR THE PSYCHOLOGICAL RESEARCHER

➤ Clean your data and build scales within your dataset

➤ Use the within() function

➤ Keeps all data objects in the dataset’s namespace

➤ When conducting analyses, specify which dataset you want
the analysis to use

➤ Some analyses will have a data= argument where you can
identify your namespace

➤ You can always use the with() function

➤ Store analysis objects in the global namespace

43

HISTORY

➤ History files are a list of the commands you’ve typed on the console within your work session

➤ Two ways to access your History:

➤ At Console command prompt:

➤ Use the up or down arrows to scroll through your history

➤ Press return/enter key to run the current command

➤ RStudio has a GUI
➤ Double-click on a command to send it to the Console

➤ Press return/enter key to run the command

➤ Save the current history file:
➤ savehistory(“Saved_History_File.Rhistory”)

➤ Load a saved history file:
➤ loadhistory(“Saved_History_File.Rhistory”)

44

DOING STATS WITH R!

45

STATISTICS IN R

➤ Intro to Example Datasets

➤ Descriptive Statistics

➤ Recoding Data and Building
Scales

➤ Inferential Statistics

46

BRIEF INTRODUCTION TO FRIENDSHIP DATA

➤ Design:

➤ Men and women (variable: sex) randomly assigned to describe a cross-sex
friend or same-sex friend in detail (variable: friendship.type)

➤ sex: -1 = female, 1 = male

➤ friendship.type: -1 = same-sex friend, 1 = cross-sex friend

➤ Other measures of interest:

➤ Demographics — Age (age), ethnicity (ethnicity), perceived socioeconomic
status (subjective.SES)

➤ Questions about the friend (e.g., closeness of friendship, comfort with
friend) — (friend.*)

➤ Big 5 Personality — BFI1 - BFI44

➤ Self-esteem — SE1 - SE10

47

BRIEF INTRODUCTION TO GENERAL SOCIAL SURVEY DATA

➤ Survey design

➤ Massive national survey of U.S. adults conducted every 2 years

➤ Interesting questions

➤ Ever paid for sex — prostitution: yes = 1, no = -1

➤ Ever been married — ever.married: yes = 1, no = -1

➤ Happiness — happiness (3-point Likert) higher values = more
happy

➤ Number of Children — children

➤ Respondent sex — sex: -1 = female, 1 = male

➤ Own a gun — own.gun: yes = 1, no = 0

48

BRIEF INTRODUCTION TO CORTISOL DATA

➤ Design:

➤ 65 participants randomly assigned to evaluation (1) or no-
evaluation (-1) condition of Trier Social Stress Test (TSST)

➤ Cortisol (nMol/L) measured at three time points (“time”)

➤ Baseline

➤ Stress: 20 minutes after start of TSST (49 minutes after
baseline sample)

➤ Recovery: 24 minutes after the stress sample

49

DESCRIPTIVE STATISTICS

➤ Sample descriptives

➤ Frequency information

➤ Centrality

➤ Spread

50

FREQUENCIES WITH TABLE()

➤ The table() function displays counts of identical observations for either
a single data vector or a dataframe

➤ General Usage:
➤ table(object)

➤ Cross-tabulate:
➤ table(object.1, object.2, …)

51

EXAMPLE: FIND SAMPLE SEX DISTRIBUTION

➤ Number of males and females in sample
➤ table(sex)

➤ Percentage of males and females in sample
➤ table(sex) / sum(table(sex)) * 100

➤ Distribution of experimental condition across the sexes
➤ table(sex, condition)

52

MEAN

➤ Calculates the mean of a numeric object

➤ General usage:
➤ mean(object, na.rm=T)

➤ Without the “na.rm=T” argument, mean() will return a
null value if there is any missing data in the object

➤ mean(cbind(object.1, object.2), na.rm=T)

53

EXAMPLE: FIND MEAN AGE OF SAMPLE

➤ Mean age of sample
➤ mean(age, na.rm=T)

54

NOTES ON CALCULATING THE MEAN

➤ Common uses:

➤ Calculate means for Methods sections

➤ To check oneself while building scales and analyzing data

➤ To centre variables around the mean

➤ NOTE:

➤ mean() returns a single value, so it won’t extract mean
values for each individual

55

ROWMEANS()

➤ R has built-in functionality for calculating per-row means

➤ This is especially handy for building scales!

➤ See “Building scales with rowmeans()” slide

56

MEDIAN

➤ The median() function finds the median (50th percentile) value

➤ General usage:
➤ median(object, na.rm=T)

57

EXAMPLE: FIND MEDIAN AGE OF SAMPLE

➤ Median age of sample
➤ median(age, na.rm=T)

58

VARIANCE AND SD

➤ Variance and standard deviation are easy to find in R

➤ General Usage:

➤ Variance:
➤ var(object, na.rm=T)

➤ var(cbind(object.1, object.2, object.3,
object.4), na.rm=T)

➤ Standard Deviation:
➤ sd(object, na.rm=T)

➤ sd(cbind(object.1, object.2, object.3,
object.4), na.rm=T)

59

EXAMPLE: FIND SD OF AGE FOR SAMPLE

➤ SD of age for sample
➤ sd(age, na.rm=T)

60

RANGE

➤ Minimum and maximum values of a numeric object

➤ General Usage:
➤ range(object, na.rm=T)

61

EXAMPLE: FIND AGE RANGE FOR SAMPLE

➤ Age range of sample
➤ range(age)

62

NICE SUMMARIES WITH DESCRIBE()

➤ describe{Hmisc} provides information about:

➤ Variance, N, mean, SD, median, trimmed mean, median
absolute deviation, minimum, maximum, range, skew,
kurtosis, standard error

➤ General usage:
➤ library(Hmisc)

➤ describe(object)

63

EXAMPLE: GET FULL DESCRIPTIVES FOR AGE

➤ Full descriptives for age
➤ library(Hmisc)

➤ describe(age)

64

RECODING DATA AND BUILDING SCALES

➤ Recoding variables

➤ Building scales

➤ Finding scale reliability

65

RECODING DATA

➤ You want to “recode” data when the raw data values are different from
the values you need for your analysis

➤ Continuous variables: reverse-coding

➤ Categorical variables: recoding

66

RECODING CONTINUOUS VARIABLES

➤ Example context:

➤ You measure mood with this scale (variable: mood):

➤ But, you want higher numbers to represent better mood …

➤ Reverse-code mood so that 1 → 7, 2 → 6, … 7 → 1

➤ Easy to reverse-code in R

➤ Add the min and max values together (e.g., 7 + 1 = 8)

➤ Subtract all values from this sum
➤ reversed.mood <- 8 - mood

Very Good Good Mildly Good Neutral Mildly Bad Bad Very Bad

1 2 3 4 5 6 7

Right now, how would you describe your mood?

67

EXAMPLE: REVERSE-CODE SUBJECTIVE SES

➤ Values of possible responses: 1 - 10

➤ High values of subjective.SES represent low SES

➤ Recode subjective.SES such that higher values represent
higher SES
➤ ses <- 11 - subjective.SES

68

RECODING CATEGORICAL VARIABLES

➤ The ifelse() function can be used to recode data

➤ General Form:
➤ new.coding <-
ifelse(old.coding==test.value,
“true.value”, “false.value”)

➤ Nested ifelse() functions can be used to recode multiple
category levels
➤ new.coding <-
ifelse(old.coding==test.value.1,
“true.value”,
ifelse(old.coding==test.value.2,
“second.true.value”, NA))

69

EXAMPLE: NUMERICALLY CODE SEX

➤ Categorical variable sex.label has two levels: male, female

➤ Effect-code sex.label such that male = 1 and female = -1
➤ sex <- ifelse(sex.label=="female", -1,  

 ifelse(sex.label=="male", 1, NA))

70

BUILDING SCALES WITH ROWMEANS()

➤ General usage:
➤ rowMeans(dataframe.object, na.rm=T)

➤ rowMeans(cbind(object.1, object.2, object.
3), na.rm=T)

➤ Building scales (e.g., items: item.1 - item.5) from a 5-point
likert (1 - 5) where some data could be missing and item.4
needs to be reverse-coded
➤ scale.values <- rowMeans(cbind(item.1,
item.2, item.3, 6-item.4, item.5),
na.rm=T)

71

EXAMPLE: BUILD SELF-ESTEEM SCALE

➤ Variables SE1 - SE10 contain answers to self-esteem items

➤ Measured on 1 - 6 Likert scale

➤ Items SE2, SE4, SE5, SE6, SE8, and SE9 need to be reverse-
coded first

➤ Calculate the average self-esteem for each participant
➤ self.esteem <- rowMeans(cbind(SE1, 7-SE2,
SE3, 7-SE4, 7-SE5, 7-SE6, SE7, 7-SE8, 7-SE9,
SE10), na.rm=T)

72

SCALE RELIABILITY IN R

➤ Two primary approaches:

➤ Cronbach’s α: alpha{psych}

1.alpha(dataframe.object,
keys=c(“V1”,”V4”, “V5”)
)

2.alpha(cbind(item.1,
item.2, item.3),
keys=c(“item.2”))

➤ McDonald’s ω:
omega{psych}

➤ omega(dataframe.object,
nfactors=3)

73

EXAMPLE: SCALE RELIABILITY OF SELF-ESTEEM

➤ Calculate Cronbach’s alpha for self-esteem
➤ reliability.analysis <- alpha(cbind(SE1,
SE2, SE3, SE4, SE5, SE6, SE7, SE8, SE9, SE10
), keys=c("SE2", "SE4", "SE5", "SE6",
"SE8", "SE9"))

➤ print(reliability.analysis)

74

INFERENTIAL STATISTICS

➤ Comparing means

➤ t-test

➤ Regression

➤ ANOVA

➤ 1-way ANOVA

➤ Factorial ANOVA

➤ Repeated-measures ANOVA

➤ Evaluating covariance

➤ Correlation

➤ Regression

➤ GLM

➤ Moderated regression

➤ Generalized linear models

75

T-TEST

➤ The t.test() function can perform 1-sample, independent-samples, or
paired t-tests to compare the difference between two means

➤ Usage:

➤ 1-sample t.test:
➤ t.test(object, mu=[comparison value])

➤ Independent samples t.test:
➤ t.test(object.1, object.2)

➤ t.test(object~group)

➤ Paired t.test:
➤ t.test(object.1, object.2, paired=TRUE)

76

EXAMPLE: T-TESTS OF FRIENDSHIP CLOSENESS

➤ 1-sample t-test
➤ Are the mean closeness with friends (friend.close) significantly different from

the midpoint of the scale (i.e., closeness > 4)?

➤ What is the 95% confidence interval around the sample mean of closeness?
➤ t.test(friend.close, mu=4)

➤ Independent samples t-test

➤ Is there a significant difference in how close participants feel to their same-
and cross-sex friends?

➤ t.test(friend.close ~ friend.type)

➤ Paired t-test

➤ Do people rate their friends as being similarly close on the IOS closeness
measure and the explicit closeness question?

➤ t.test(friend.close, friend.IOS, paired=T)

77

REGRESSION FOR DIFFERENCES BETWEEN TWO MEANS

➤ The linear model is the most useful function in R

➤ Save your results in an object and print them using the summary() function

➤ Two functions of great value:

➤ lm(): general linear model (i.e., with a normally-distributed dependent
variable)
➤ linear.model <- lm(formula,
data=dataframe.object)

➤ summary(linear.model)

➤ glm(): generalized linear model (i.e., dependent variable has any
distribution from the exponential family)
➤ generalized.linear.model <- glm(formula,
data=dataframe.object, family=family.object)

78

“FORMULA” SYNTAX

➤ Dependent variables are predicted by a tilde “~”

➤ So, the formula to regress “y” on “x” is: y ~ x

➤ The intercept …:

➤ Is an additive term in the model, represented with the
number 1

➤ Is estimated by default, so you do not have to declare it

➤ e.g., y ~ 1 + x is equal to y ~ x

➤ Linear main effects are added to the model with a “+” sign

79

ANOVA

➤ ANOVA is simply a different way of evaluating explained variance in
linear modelling

➤ R represents this by having the “anova()” function be a
wrapper around lm()

➤ You must always wrap the anova() function around a lm()
function:

➤ CORRECT:

➤ anova(lm(y ~ x, data=dataframe.object))

➤ INCORRECT:

➤ anova(y ~ x, data=dataframe.object)

80

EXAMPLE: 1-WAY ANOVA IN R

➤ Does happiness differ between people who have and haven’t
paid for sex?

1.Run the linear model that tests whether happiness is
predicted by purchasing a prostitute.

2.Run an ANOVA to find the F-statistics and df that
correspond to this test

81

FACTORIAL ANOVA

➤ Factorial ANOVA involves multiple factors, typically interacting with
each other

➤ Best to use Anova{car}

➤ Anova can give you “Type III Sums of Squares”

➤ Output will match what you get in SAS and SPSS

➤ Usage:
➤ Anova(linear.model, type=3)

82

EXAMPLE: FACTORIAL ANOVA IN R

➤ Do men and women report the same number of kids and does
marital status affect reported number of kids?

1.Run a linear model predicting number of children from sex
and whether a person has ever been married

2.Use Anova with Type III sums of squares to find F-statistics
and df

83

REPEATED MEASURES ANOVA IN R

➤ Repeated-measures and mixed-effects ANOVA involve at least one
variable that is measured repeatedly

➤ Use the aov() function, specifying the participant as an “error
stratum”

➤ Usage:
➤ aov(y ~ repeated.x1*x2  

+ Error(subject.id/repeated.x1))

84

EXAMPLE: MIXED-EFFECTS ANOVA IN R

➤ Does cortisol change over time differently based on condition
of the TSST?

➤ Run a mixed-effects ANOVA predicting cortisol from time
and condition

85

ESTIMATING COVARIANCE RELATIONSHIPS

➤ Find the correlation of two items:
➤ cor(item.1, item.2, use=“complete.obs”)

➤ Testing for the significance of a correlation between two items:
➤ cor.test(item.1, item.2, use=“complete.obs”)

➤ Find the correlation of multiple items:
➤ cor(dataframe.object, use=“complete.obs”)

➤ Testing for the significance of a correlation between multiple
items:
➤ library(psych)

➤ corr.test(dataframe.object)

86

EXAMPLE: CORRELATION AND CORRELATION TEST

➤ Is there a relationship between a respondent’s self-esteem and
their feelings of closeness with their friends?

➤ Find the straight-up correlation (effect size)

➤ Run a t-test on this correlation to find its significance

87

PARTIAL CORRELATION

➤ Partial correlation estimates the correlation between two variables
after their shared variance with a third variable has been “partialled
out”

➤ partial.r{ psych }
➤ library(psych)

➤ partial.r(dataframe.object,
column.numbers.to.correlate,
column.numbers.to.partial.out)

➤ corr.p(partial.r.object, n=sample.size)

88

EXAMPLE: CORRELATION AND CORRELATION TEST

➤ Is there a relationship between self-esteem and friendship
closeness when comfort with a friend is taken into account?

➤ Find the partial correlation between self-esteem and
friendship closeness, partialling out comfort with friend

89

GENERAL LINEAR MODEL: SIMPLE REGRESSION

➤ You already know linear modelling in R!

➤ Use lm() or glm() functions

➤ Usage:
➤ summary(lm(y ~ x))

➤ summary(glm(y ~ x))

➤ Get standardized slopes with lm.beta{QuantPsyc}
➤ lm.beta(model.object)

➤ Get effect sizes with getDeltaRsquare{rockchalk}
➤ getDeltaRsquare(model.object)

90

EXAMPLE: GLM WITH ONE PREDICTOR

➤ Does self-esteem predict greater friendship closeness?

➤ Centre self-esteem first

➤ Run a glm and examine effects

91

MODERATED REGRESSION

➤ Still use the lm() or glm() functions

➤ e.g., lm(y ~ x1 * x2, data=dataframe.object)

➤ The difference between simple regression and moderated
regression is simply in the symbols you use in the formula

➤ Main effects are always added with a “+”

➤ Interaction effects are added using the “*” or “:” signs, with
“*” automatically including the lower-order effects for the
interaction

➤ y ~ x1*x2 is equal to y ~ 1 + x1 + x2 + x1:x2

➤ y ~ x1:x2 is equal to y ~ 1 + x1:x2

92

EXAMPLE: MODERATED REGRESSION

➤ Is the relationship between self-esteem and friendship
closeness moderated by how comfortable people feel with
their friends?

➤ Centre the moderator, comfort with friend

➤ Note: We already centered self-esteem

93

GENERALIZED LINEAR MODELS

➤ Generalized Linear Models predict non-normal dependent variables (DV)

➤ Simply add a “family=…” argument to the glm() function!

➤ Most common examples:

➤ Logistic Regression

➤ Used when your DV is a binary variable coded with 0 or 1 (e.g., yes/no, correct/
error present/absent)

➤ summary(glm(y ~ x, family=binomial))

➤ Note: You must ensure your DV is coded with zeros and ones

➤ Poisson Regression

➤ Used when your DV is an integer count variable

➤ summary(glm(y ~ x, family=poisson))

➤ Note: You must ensure your DV is a positive integer

94

EXAMPLE: LOGISTIC REGRESSION

➤ Does the amount of TV that Americans watch in a day predict
whether they own a gun?

➤ Run a logistic regression predicting gun ownership from
TV watching

95

EXAMPLE: POISSON REGRESSION

➤ Does the amount of TV that Americans watch in a day predict
the number of children they have?

➤ Run a poisson regression predicting number of children
from TV watching

96

CHI-SQUARE TEST

➤ Frequently we want to know if observations were distributed equally
across all possible outcomes, for which we would conduct a Chi-square
test

➤ In R, !2 tests are conducted by wrapping a chisq.test()
function around a table() function

➤ Goodness of Fit Test for 1 Factor:

➤ chisq.test(table(object.1))

➤ Test of Independence for Multiple Factors:

➤ chisq.test(table(object.1, object.2, …))

97

EXAMPLE: CHI-SQUARE TESTS

➤ Goodness-of-Fit

➤ Was experimental condition (“friend.type”) equally
distributed across participants in the friendship.data?

➤ Test of Independence

➤ Was experimental condition equally distributed across both
sexes of participants?

98

Graphing in R

99

PLOTS

➤ R provides powerful graphing capabilities

➤ Commonly-used built-in plots:

➤ Histogram: hist()

➤ Scatterplot: plot()

➤ Boxplot: boxplot()

➤ Most plots take similar arguments

100

HISTOGRAM

➤ Displays the frequency or probability
of values for a numeric object

➤ General usage:

➤ hist(numeric.object
)

➤ Change the number of bars:

➤ hist(numeric.object,
breaks=20)

➤ Plot probabilities instead of
densities:

➤ hist(numeric.object,
freq=F)

101

SCATTERPLOT

➤ A plot of points that intersect in
multiple dimensions

➤ plot(x, y)

➤ Add a little noise around
integer responses:

➤ plot(x, jitter(y))

➤ Add dimensions through plot
features:

➤ z.colours <-
ifelse(z==1,
“green”, “orange”)

➤ plot(x, y,
col=z.colours)

102

ADDING LINES TO SCATTERPLOTS

➤ Two-step process:

➤ Create your scatter plot
with plot()

➤ plot(x, y)

➤ Add lines one at a time with
the abline() and lm()
functions

➤ abline(lm(y ~ x))

103

EASY INTERACTION PLOTS

➤ For categorical predictors:

➤ anova.model <- lm(y
~ x1 * x2)

➤ interaction.plot(x1,
x2, y)

➤ For continuous predictors:

➤ effect{effects}

➤ moderated.regression
<- lm(y ~ x1 * x2)

➤ plot(effect(“x1 *
x2”,
moderated.regression
, default.levels=2))

104

BOXPLOTS

➤ Boxplots provide plots of centrality
and spread for different levels of a
category

➤ General Usage:

➤ boxplot(formula,
data=dataframe.object
)

➤ e.g., boxplot(y ~
factor)

105

PLOT META-DATA

➤ Most plots in R have plot “parameters” as arguments

➤ Common parameters:

➤ Title of Plot: main=“Title String”

➤ X-axis Label: xlab=“Axis Title String”

➤ Y-axis Label: ylab=“Axis Title String”

➤ X-axis Limits: xlim=c([lower limit], [upper limit])

➤ Y-axis Limits: ylim=c([lower limit], [upper limit])

➤ Colours: col=”[colour name]”

➤ Point Styles: pch=[style number]

➤ Line Styles: lty=[style number]

106

MATRIX OF PLOTS

➤ Using the parameter par() function, you can tell R how to
display plots:

➤ Grid of plots: par(mfrow=c([rows],[columns]))

➤ Default is: par(mfrow=c(1,1))

107

SAVING A PLOT WITH IMAGE FUNCTIONS

➤ Saving a plot has three steps:

1. Identify the format and file name in which the plot will be written

➤ General form: format(“filename”)

➤ Available formats: pdf(), png(), jpeg(), bmp(), postscript()

2.Run your plot command (e.g., plot(x, y))

3.Restore the graphical output window:
➤ dev.off()

4.Example:
➤ png(“file.png”)

➤ plot(x, y)

➤ dev.off()

108

EXAMPLE: PLOTS IN R

1.Create histograms for each of these 3 variables from friendship
data in a 3-row matrix:

➤ friend.close, self.esteem, friend.comfort

2.Use the effects package to create an interaction plot for the
moderated regression we ran earlier

3.Save the interaction plot on your harddrive as “Figure 1.png”

109

INTERACTING WITH DATA IN R

110

CLASSES

➤ All objects have a “class”

➤ Way of categorizing objects in R

➤ Classes will most directly affect you through data classes

➤ You can always learn an object’s class if you don’t know it:
➤ class(object)

111

DATA CLASSES

➤ Types of data (stored in 1-dimensional “vectors”)

➤ Numeric

➤ Character

➤ Factor

➤ Boolean

➤ Ways to store data

➤ Data Frames

➤ Lists

➤ Matrices

➤ Find the class of an object with class(): class(object)

112

NUMERIC

➤ Any real number

➤ Floating point precision
ranging from |2x10-308| to |
2x10308|

➤ Many analyses will require
data to be numeric

➤ E.g., t-test, correlation,
regression

113

CHARACTER

➤ Alphanumeric strings, stored as
elements in a 1-dimensional array

114

FACTORS

➤ Alphanumeric strings, stored as
ranked elements in a 1-dimensional
array

➤ Factors have meta-data that
contains the values of all category
levels

➤ Important note:

➤ Factors are case-sensitive

➤ e.g., “Hello!” ≠ “hello!”

115

FACTOR VALUES VS. FACTOR LABELS

➤ Factors can be used to attach alphanumeric labels to numeric
values
➤ object <- c(-1, 1, -1, 0, 1)

➤ as.factor(object)
[1] -1 1 -1 0 1
Levels: -1 0 1

➤ factor(object,  
 levels=c(-1, 0, 1),  
 labels=c(“low”, “medium”, “high”)  

)
[1] low high low medium high
Levels: low medium high

116

FACTOR() AND ORDERED()

➤ There are two types of categorical variables represented by R, and you can
set their meta-data how you want

➤ Unordered (a.k.a, “nominal”) = factor()

➤ Ordered (a.k.a., “ordinal”) = ordered()
➤ as.ordered(object)
[1] low medium high low high
Levels: high < low < medium

➤ ordered(object, levels=c(“low”, “medium”, “high”)
)
[1] low medium high low high

➤ Levels: low < medium < high

➤ For the most part, you will store categorical variables as factors

117

BOOLEAN

➤ Boolean vectors contain the
results of logical tests

➤ Booleans can take one of two
values:

➤ TRUE (also “T”)

➤ FALSE (also “F”)

➤ Booleans will be returned as
the result of a test, or can be
used as data themselves

118

VECTORS

➤ 1-dimensional arrays of which all elements share the same class

➤ The length of a vector equals its number of elements

➤ You can find the length of a 1-dimensional object with
length()

➤ Example, where vector.object has 3 elements: accountant,
mechanic, architect
➤ print(vector.object)
[1] "accountant" "auto mechanic"
"architect"

➤ length(vector.object)
[1] 3

119

CREATE A NEW VECTOR

➤ Vectors are created with the “combine” function, c()
➤ new.vector <- c(element.1, element.2)

➤ R automatically assigns vectors to a class, if a class is not specified

➤ Combining all numbers?
➤ new.vector <- c(1, 2, 9, 2, 3)

➤ class(new.vector)
[1] "numeric"

➤ Combining any non-numeric elements
➤ new.vector <- c(1, 2, 9, “puppy”, 3)

➤ class(new.vector)
[1] "character"

120

MANIPULATING DATA CLASSES

➤ If you think you know an object’s class, you can ask R if you
are right:
➤ is.numeric(object)
[1] FALSE

➤ If you want to change an object’s class, you can tell R to do
so:
➤ new.object <- as.numeric(object)

➤ is.numeric(new.object)
[1] TRUE

121

IMPORTANT NOTE ABOUT MANIPULATING DATA

➤ NEVER FORGET: R does not understand you nor your data …

➤ Always take a moment to think when you do something

➤ Using a source/syntax file helps you take a moment

➤ Common way to go wrong with as.numeric()

➤ If is.factor(object)==TRUE
➤ as.numeric() will rank all factor levels, sorting numbers in order

first and then strings in alphabetical order second

➤ If is.character(object)==TRUE

➤ as.numeric() will return numbers as numbers but non-
numbers will become NA

122

DATAFRAME

➤ A 2-dimensional (row X column) array that contains data objects arranged in
columns

➤ Dataframes have meta-data

➤ Names: Variable names, names of columns

➤ Dimensions: Two dimensions: (1) number of rows and (2) the number of
columns

➤ Row names:

➤ Row names are sequential row numbers by default, but they can be set to
have semantic labels, too

➤ All values stored in the same column of a data frame have the same
class (e.g., numeric), but data classes can vary across columns in a
dataframe

123

VIEW()

➤ A method for looking at your dataframe in a spreadsheet-like format

➤ View(dataframe.object)

➤ Note that:

➤ R will truncate the number of columns you can see

➤ You cannot edit the dataframe that you view

124

FINDING OUT STUFF ABOUT DATAFRAMES

➤ What are the names of the variables stored in the dataframe?
➤ names(dataframe.object)

➤ What are the dimensions of the dataframe (Row, Column)?
➤ dim(dataframe.object)

➤ How many rows does the dataframe have?
➤ nrow(dataframe.object)

➤ How many columns does the dataframe have?
➤ ncol(dataframe.object)

➤ What are the row names of the dataframe?
➤ row.names(dataframe.object)

125

EXAMPLE: EXPLORING DATA FRAME PROPERTIES

1.Print the variables names of friendship.data

2.Find out how many observations are in friendship.data

126

ACCESSING OBJECTS IN A DATAFRAME

➤ Access a specific variable (“variable.name”) in a data.frame in one of two
ways:

1.Use with(): with(dataframe.object, variable.name)

2.Use “$”: dataframe.object$variable.name

3.Use “[]”: dataframe.object[,“variable.name”]

➤ Access specific rows:
➤ dataframe.object[1,] # first row

➤ dataframe.object[c(1, 4:5),] # 1st, 4th, and 5th rows

➤ Access specific columns:
➤ dataframe.object[,1] # first column

➤ dataframe.object[,c(1, 4:5)] # 1st, 4th, and 5th
columns

127

CREATING A DATAFRAME

➤ New data frames can be created with the data.frame() command

➤ Use cases:

➤ Creating a dataframe, keeping the original object names:
➤ new.dataframe.object <- data.frame(column.1,
column.2, column.3)

➤ Creating a dataframe with new names for the first two objects:
➤ new.dataframe.object <-
data.frame(New_Name_1=column.1,
New_Name_2=column.2, column.3)

➤ Creating a dataframe from new data:
➤ new.dataframe.object <-
data.frame(New_Name_1=c(1, 2, 3, 4, 5),
Name_2=c(“a”, “b”, “c”, “d”, “e”))

128

GOOD THINGS TO KNOW ABOUT DATAFRAMES

➤ All column names must be unique

➤ When there is a conflict, R adds the suffixes of “.x” and
“.y” to the first and second instances of identical variable
names

➤ Every object stored in a column must have the same length
(i.e., number of rows) as the other columns

129

LISTS

➤ A multidimensional array that contains objects of varying lengths

➤ Objects stored in the same list can have different dimensions

➤ Data frames are a special type of list, where the objects all
have the same lengths

➤ Lists are created with list()
➤ new.list = list( 

object.1 = c(1, 3, 0, 8, 4, 3),  
object.2.2 = c(“orange”,

“banana”),  
object.2.3 = c(-1, NA, 3, 6)  

)

130

HIERARCHICAL LISTS

➤ Lists can be stored within lists

➤ hierarchical.list <- list( 
list.1 = ( 
object.1.1,  
object.1.2),  

list.2 = ( 
object.2.1,  
object.2.2,  
object.2.3)  

)

➤ … this knowledge will probably come in handy if you get into
advanced data management and other wizardry with R

131

MATRIX

➤ A 2-dimensional array (row X column) that has no meta-data

➤ A matrix is identical to a dataframe, except that it has no row
and column names

➤ Create a new matrix:
➤ new.matrix <- matrix(NA, nrow=1, ncol=42)

➤ new.matrix <- cbind(object.1, object.2,
object.3)

132

COMMON ELEMENTS OF DATAFRAMES AND MATRICES

➤ Elements in a matrix or dataframe can be accessed by their
row and column numbers
➤ cell.at.third.row.second.column <-
matrix.object[3, 2]

➤ entire.third.row <- matrix.object[3,]

133

READING IN DATA

➤ There are many core and add-on functions for reading data
files

➤ The main function is read.table(), with the more specific:

➤ read.csv(): comma-delimited files

➤ read.delim(): tab-delimited files

134

READ.TABLE()

➤ read.table() is the generic function for reading data into R as dataframes

➤ General usage:
➤ tabular.data <-
read.table(“[filename_on_your_computer]”,
sep=”[delimiter]”, header=TRUE)

➤ TIP: Remember to assign the returned data to an object

➤ This is usually useless:  
read.table(“comma.delimited.infile.csv”, sep=”,”,
header=TRUE)

➤ This is ready for analysis:
infile.data <- read.table(“comma_delimited_infile.csv”,
sep=”,”, header=TRUE)

➤ Read.table() has many options, so read.csv() and read.delim() were written as
a read.table() with a specific set of defaults

135

READ.CSV()

➤ Reads a delimited file into R as a data frame using a comma as the
default delimiter

➤ General usage:
➤ comma.delimited.data <-
read.csv(“[filename_on_your_computer].csv”
)

136

READ.DELIM()

➤ Reads a delimited file into R as a data frame using a tab as the default
delimiter

➤ General usage:
➤ tab.delimited.data <-
read.delim(“[filename_on_your_computer].txt”
)

137

ADVANCED
DATA

MANAGEMENT

138

THE PERILS OF ATTACH()

➤ attach() is a function that places all the variable names of a data.frame in
your global namespace

➤ The corresponding detach() function will remove a dataset

➤ Benefits:

➤ You can reference variables from a dataset directly, without
specifying the dataset

➤ Cons:

➤ Operations conducted on these variables are stored in the
global namespace, not reflected in the original dataset

➤ Increased chance for namespace conflicts, especially if detach()
is not used rigorously

139

WITHIN()

➤ The function within() provides a method for performing operations
within a particular dataset

➤ Any action performed inside a within() statement is
conducted with a particular dataset and makes changes to
that dataset

➤ Note:

➤ You must always save the resulting object from a within()
statement

➤ General Form:
➤ dataframe.object <- within(dataframe.object,
{…}), where {…} = a series of syntax commands

140

WITH()

➤ The function with() is used to declare a dataset to use as the namespace
for almost any operation

➤ The actual function called with with() dictates the type of
object that is returned

➤ General Form:

➤ with(dataframe.object, …), where … is a syntax
command

141

MERGE()

➤ The merge() function can be used to add variables to a dataset or merge
two datasets together

➤ The default is to merge based on all columns with
matching names

➤ General form:
➤ merged.dataset <- merge(data.1, data.2)

➤ merged.dataset <- merge(data.1, data.2,
by=”id”)

➤ Note: You must save the merged dataset as a new object

142

NOTES ON MERGE()

➤ Want to keep rows from one of the datasets that are not represented in
the other dataset?

➤ merged.dataset <- merge(data.1, data.2,
all.x=T) #data.1 favoured

➤ merged.dataset <- merge(data.1, data.2,
all.y=T) #data.2 favoured

➤ merged.dataset <- merge(data.1, data.2,
all.x=T, all.y=T) #Both sets

143

EXAMPLE: MERGING DATASETS

1.Read in the datafile called “working_memory.csv”

➤ It is comma-delimited

➤ Variables names are on the first row, data starts in the next
row

2.Merge friendship.data with the working memory data

➤ The subject variable match the subject numbers in
friendship.data

3.Look at the newly merged data with View()

144

RBIND()

➤ The rbind() function can be used to add cases to an existing dataset
(i.e., merge additional rows)

➤ Both dataframe objects must have the same number of
columns and column names

➤ General form:
➤ full.data <- rbind(first.data,
second.data)

145

SUBSET()

➤ The subset() function allows you to take a subset of a dataframe based
on a logical operation

➤ General form:
➤ subset(dataframe.object,
logical.statement)

➤ For example:
➤ male.data <- subset(example.data,
sex==”male”)

146

HEAD() AND TAIL()

➤ The head() and tail() functions print the first 5 rows and last 5 rows of
a data frame object, respectively

➤ General Form:
➤ head(dataframe.object)

➤ tail(dataframe.object)

147

DIM() AND LENGTH()

➤ Sometimes it is useful to know an objects dimensions, for which
length() and dim() are used for vectors and multidimensional data
objects, respectively

➤ length() is for vectors, and it returns the number of elements
in the vector
➤ length(x)

➤ dim() is for matrices or dataframes, and it returns the number
of rows and the number of columns, in that order
➤ dim(dataframe.object)

148

MANIPULATING CHARACTERS

➤ Strings are an integral part of data processing

➤ R contains many powerful functions for manipulating strings

149

SUBSTR()

➤ Subset a string

➤ General Usage:
➤ substr(string.object, start, stop)

150

STRSPLIT()

➤ Split a string along some value

➤ General usage:
➤ returned.list <- strsplit(string.object,
“delimiter”)

151

TOUPPER() AND TOLOWER()

➤ These two functions change the case of strings

➤ tolower() converts an entire string to lowercase

➤ toupper() converts an entire string to uppercase

152

SUB()

➤ Equivalent of find-and-replace, sub() substitutes one part of a string
with another

➤ General Usage:
➤ sub(“replacement pattern”, “replacement”,
string.object)

153

PASTE()

➤ The paste() function can be used to combine strings intelligently

➤ General Form:
➤ paste(first.value, second.value, sep=””)

➤ If one of the values is a constant and the other is a series,
the constant is attached to each value of the series

➤ Example
➤ paste(“item”, 1:5, sep=””)
[1] item1 item2 item3 item4 item5

154

DIFFERENT FILE FORMATS

➤ R has many libraries for importing data in other formats

➤ foreign: imports data from other stats packages

➤ readxl: imports and exports data from and to Excel

155

EXPORTING DATA

➤ Use the write.table() function to export data as a normal
delimited file

➤ Use write.xlsx{xlsx} to export data as an excel spreadsheet

➤ Use write.foreign{foreign} to export data in another stats
package format

156

DEALING WITH MISSING DATA IN R

157

MISSING VALUES IN R

➤ R represents missing values as “NA”

➤ You need to specifically tell R what to do with NA values

158

TESTING FOR MISSING VALUES WITH IS.NA()

➤ Want to know if any values of an object are classified as
missing?
➤ is.na(object)

➤ Want to know how many missing values there are?
➤ sum(is.na(object))

159

RECODE A VALUE AS MISSING

➤ You can code multiple values as missing when you read them into
R:
➤ read.table(“file.csv”, sep=“,”, header=TRUE,
na.strings=c(“”, “n/a”, “N/A”, “NA”, “na”, 999))

➤ You can manually set a value to missing by using the unquoted
string, NA
➤ print(x)
[1] 2 3 2 1 5 1 2

➤ x[3] <- NA

➤ print(x)
[1] 2 3 NA 1 5 1 2

160

PATTERN OF MISSING DATA

➤ Is my data Missing Completely At Random (MCAR)?

➤ The pattern of missing data is completely randomly distributed across all
variables collected

➤ Is my data Missing At Random?

➤ The pattern of missing data is not completely random, but it can be
explained with other variables collected by the researcher

➤ If so, be sure to include the variables that are related to missingness as covariates in
your analyses

➤ Is my data Missing Not At Random?

➤ The pattern of missing data is clearly not random, but none of the variables
collected by the researcher can explain the pattern of missingness

➤ Inferential hypothesis testing is not valid

161

TEST THE PATTERN OF MISSING DATA

➤ The LittleMCAR{BaylorEdPsych} function can test whether
data is MCAR

➤ General Usage:
➤ mcar.test <- LittleMCAR(dataframe.object)

➤ mcar.test$chi.square; mcar.test$p.value

➤ If it is not MCAR, then you should conduct a series of logistic
regressions to try to predict missing values in the data
➤ y.missing <- ifelse(is.na(y), 1, 0)

➤ glm(y.missing ~ x1 + x2, family=binomial)

162

PAIRWISE DELETION

➤ Pairwise deletion is a method of dealing with missing values by
excluding any cases that have missing values on variables used in a
current analysis

➤ Pairwise deletion is conducted in R at the level of the
analysis

➤ E.g., mean(x, na.rm=TRUE)

➤ E.g., cor(x, y, use=“pairwise.complete.obs”)

➤ E.g., lm(x, na.action=“na.exclude”)

➤ Only valid when data is MCAR, and may still not be valid
for your overall analysis

163

LISTWISE DELETION

➤ Listwise deletion is a method of dealing with missing data by only
including cases that have complete data

➤ Valid only when data is MCAR

➤ The na.omit() function removes all rows from a dataset that
contain at least one missing value
➤ all.complete.cases.data <-
na.omit(dataframe.object)

164

MULTIPLE IMPUTATION

➤ Multiple imputation is a method for dealing with missing data when
data is MCAR or MAR

➤ Missing data points are “imputed” from the observed data
points

➤ This imputation is done multiple times to ensure that
the imputation method is stable

➤ Your analysis is run once in each imputation

➤ Parameters are pooled across the imputations

165

MULTIPLE IMPUTATION IN R

➤ The mice package provides a number of helpful, simple functions for
multiple imputation

➤ 3 steps:

1.Impute some datasets
➤ imputations <- mice(dataframe.object)

2.Run an analysis on each imputed dataset
➤ imputed.analysis <- with(imputations, lm(y
~ x))

3.Pool together the results of the analysis across the imputed
datasets
➤ summary(pool(imputed.analysis))

166

EXAMPLE: MULTIPLE IMPUTATION

1.Install and load the “mice” package

2.Centre self-esteem and SES in friendship data

3.Create 5 imputed datasets for friendship data

4.With the imputed datasets, run a moderated regression
predicting working memory from self-esteem and SES

5.Pool the results to determine the regression results

167

ADVANCED FUNCTIONS
Useful Functions and Custom Function

168

GOOD FUNCTIONS TO KNOW

➤ Mathematical Operators

➤ Logical Operators

➤ Setting R preferences with
options()

➤ Hodgepodge of useful
functions

169

MATHEMATICAL FUNCTIONS

Function (on object x) Description Example

abs(x) Absolute value > abs(- 7)
[1] 7

sqrt(x) Square root > sqrt(9)
[1] 3

log(x) Natural Logarithm > log(100)
[1] 4.60517

log10(x) Normal Log10 > log10(100)
[1] 2

exp(x) Power of e (“exp”) > exp(5)
[1] 148.4132

Source: statmethods.net (Quick-R)

➤ Some math operations can be done with functions:

170

LOGICAL OPERATORS IN R

➤ Logical operators are used to compare values in R

➤ When a logical operator is used, R will return a boolean
TRUE/FALSE value

➤ Logical operators:

➤ “==” is “equal to”

➤ “!” is “not”

➤ “!=” is “not equal to”

➤ “>” is “greater than”

➤ “>=” is “greater than or
equal to”

➤ “<“ is “less than”

➤ “<=” is “less than or
equal to”

171

OPTIONS()

➤ The options() function sets R preferences

➤ There are numerous options for your R work session

➤ e.g., options(prompt= “(: ”)
(:

➤ For a list of available options:

➤ ?options

➤ Curious about what options you have set?

➤ getOption(“[option.name]”)

172

UPDATE()

➤ The update() function can be used to update linear model objects

➤ This can be very useful for model comparison

➤ General Form:
➤ original.model <- lm(formula.object)

➤ reduced.model <- update(original.model,
new.formula.object)

➤ Notes:

➤ In formula, “.” indicates something that already existed

➤ “-” and “+” can be used to subtract and add terms to the
models

173

SCALE()

➤ The scale() function standardizes (i.e., Z-scores) a variable or
dataframe

➤ General Form:
➤ Zx <- scale(x)

➤ The scale() function can be used to centre a variable if the
“scale” argument is set to “F”:
➤ centered.x <- scale(x, scale=FALSE)

174

LEVELS()

➤ The levels() function tells you how many levels a factor variable has

➤ General form:
➤ levels(factor.object)

175

SIGNIF(), ROUND(), FLOOR(), CEILING()

➤ R has a number of functions for specifying the floating point precision

➤ signif() prints a number with a particular significant digits

➤ Usage: signif(x, significant.digits)

➤ round() rounds to the digits specified

➤ Usage: round(x, round.digits)

➤ floor() creates an integer by rounding down to the nearest
integer

➤ Usage: floor(x)

➤ ceiling() creates an integer by rounding up to the nearest integer

➤ Usage: ceiling(x)

176

APPLY()

➤ The apply() function is used to apply a function across the
rows or columns of a dataset

➤ General Form:
➤ apply(function, data.object, 1.for.rows.
2.for.cols)

➤ Calculate row means:
➤ apply(mean, dataframe.object, 1)

➤ Calculate column means:
➤ apply(mean, dataframe.object, 2)

177

TAPPLY()

➤ The tapply() function is used to apply a function within each
level of another variable

➤ General Form:
➤ tapply(object.to.manipulate, group.object,
function)

➤ Common uses:

➤ To find group means

178

CUSTOM FUNCTIONS

➤ Nesting Functions

➤ Writing Your Own Functions

➤ Loops

179

NESTING FUNCTIONS

➤ Functions can be nested in one another

➤ For example, the following two sets of commands are
equivalent:
➤ sum(is.na(object))

➤ missing.boolean <- is.na(object)
sum(missing.boolean)

➤ Nested functions are evaluated at the most inner parentheses,
moving outward in order

180

CUSTOM FUNCTIONS

➤ R has core methods for creating your own custom functions

➤ Use the function() command

➤ Save the function in the global workspace

181

FUNCTION()

➤ The function() function in R is a function that creates functions

➤ General Usage:
➤ function.name <- function(argument) {

x <- argument * 100
return(x)

}

➤ y <- function.name(z)

182

EXAMPLE: CREATE A FUNCTION TO SCORE A MULTI-DIMENSIONAL LIKERT SCALE

1.Create your own functions called “score.bfi()” that takes a 44-item Big 5
inventory and returns a list of per-participant scores for the Big 5 personality
dimensions

1.1.Create a dataframe that has the 44-items in the Big 5, called
“big.five.items”

1.2.Create a function called “score.bfi” that takes a 44-item dataframe as an
argument

1.2.1.The score.bfi() function calculates five new variables, one for each
personality dimension

➤ Some values will need to be reverse scored

1.2.2.The function returns the five new variables in one dataframe

2.Call the function, saving the returned object in a new dataframe called
“bfi.scores”

183

INFO NEEDED TO WRITE EXAMPLE FUNCTION

➤ Scoring the 44-item Big 5:

➤ Openness:

➤ Regular items: 25, 5, 30, 20,
40, 44, 15, 10

➤ Reversed items: 35, 41

➤ Conscientiousness

➤ Regular items: 3, 33, 38, 13,
28

➤ Reversed items: 43, 8, 23, 18

➤ Extraversion:

➤ Regular items: 36, 1, 26, 16,
11

➤ Reversed items: 6, 31, 21

➤ Agreeableness

➤ Regular items: 32, 42, 7, 17,
22

➤ Reversed items: 2, 12, 27, 37

➤ Neuroticism

➤ Regular items: 19, 14, 39, 4,
29

➤ Reversed items: 34, 24, 9

184

LOOPS

➤ Loops are operations that should be performed iteratively, such as once
per element of a dataset

➤ Each iteration

➤ General Form:
➤ for(iteration.id in loop.start:loop.end) {  

…commands to run on each iteration …  
}

➤ Example:
➤ for(i in 1:10) {  

print(paste(“item”, i, sep=“_”))  
}

185

EXAMPLE: CORRELATE SELF-ESTEEM WITH EACH PERSONALITY DIMENSION

1.Create a loop that prints a correlation test of the variable
“self.esteem” with each of the Big 5 personality dimensions
that were returned by your score.bfi() function
➤ for(i in 1:dim(bfi.scores)[2]) {

 print(names(bfi.scores)[i])  
 print(cor.test(bfi.scores[,i],  

 friendship.data$self.esteem))  
}  

186

TROUBLE SHOOTING PROBLEMS IN R

187

BEST PRACTICES WITH HELP FILES

1.Unless you REALLY know a function well, always begin your
use of that function with:
➤ ?function.name

2.Then, try out your syntax on the console without saving it to
an object (to see what it returns)

3.When you are satisfied with the result, save the good syntax to
your script syntax file

188

WARNING MESSAGES VERSUS ERROR MESSAGES

➤ R will give you two types of messages:

➤ Error messages occur when R terminates a step while executing a
function

➤ If an error message occurs, you must fix the problem

➤ Warning message occur when R had to do something that may
render its actions invalid

➤ If a warning message occurs, you do not have to fix the problem

➤ Warning messages should be taken as a tip or a sign that
something may be wrong

➤ You may ignore warnings, if your decision is based on
understanding the root cause of the warning

189

EMBRACING ERROR MESSAGES

➤ R speaks like a person with perspective-taking problems

➤ But humans have the ability to empathize with R!

➤ R is usually describing its problem completely, but you
have to learn to understand its peculiarities of speech

➤ The more error messages you read, the more
understandable R will become

190

PROCESSING MULTIPLE ERROR MESSAGES

➤ Error messages have cascading influence

➤ If something that is needed by later operations breaks,
those later operations will also break

➤ If you get a bunch of error messages:

➤ Scroll up to your last command prompt

➤ Scroll down through the error messages, trying to solve
them in sequential order

➤ If you solve an early error message, run the command
again, because the later error messages may disappear

191

QUICK-R

➤ http://www.statmethods.net

➤ An *awesome* online blog about R

➤ Provides concise examples of how to do many analyses and
graphs in R

192

IDEAL GOOGLE SEARCHES

➤ Start broad, then add qualifiers

➤ Typically start by type “R”, a space, and then an analysis
you’d like to do

➤ If you want examples of a function, search for “R” and the
function name, then add on arguments and special cases

➤ When you are unable to solve an error message:

➤ The error message contains some things that the error output
of the function and others that are unique to your setup

➤ Use the “*” operator that represents a “wildcard” (as in,
anything) in Google to search for any instance of the error
output

193

GOOD FORM FOR R SCRIPTS

➤ Have one “Build.R” file that reads in everything

➤ When you’ve gotten that right, save your workspace

➤ Have an “Analysis.R” file that loads the saved workspace and
does all analyses

➤ You can also “source” your Build.R script in Analysis.R

194

GRAND SUMMARY
Take-home Messages

195

GRAND SUMMARY

➤ What is R?

➤ A powerful statistical package

➤ What can it do?

➤ Basically any analysis

➤ What is so great about it?

➤ Open-source

➤ Object-orientated approach to statistics

➤ Increases reproducibility

➤ Once you get used to it, it is the EASIEST package to use!

196

WANT TO KNOW MORE?
Book Recommendations

197

THAT’S R IN A NUTSHELL!

198

¡¡THANK YOU!!

➤ Workshop Sponsor

➤ Psychology Graduate Department, University of Toronto

➤ Questions? Comments? Feedback?

➤ liz@psych.utoronto.ca

➤ Workshop Materials:

➤ http://page-gould.com/r/uoft/

199

NOTE ABOUT DISTRIBUTION OF WORKSHOP MATERIALS

➤ The slides and syntax for this workshop are the original work of Elizabeth
Page-Gould, distributed to you with Creative Commons 3.0 International
License

➤ This means that YOU MAY:

➤ Freely share, distribute, and even “remix” the slides and syntax

➤ BUT ONLY UNDER THE FOLLOWING CONDITIONS:

➤ With attribution: You provide attribution to Elizabeth Page-Gould with a
link to the original workshop materials: http://page-gould.com/r/uoft

➤ Share alike: If you alter or remix this work in any way, you must also
share your final product with a license that has similar conditions to this
one (e.g., to be distributed freely)

➤ Non-commercial: You may not use these materials for commercial
purposes without explicit permission from Elizabeth Page-Gould

200

